Enhancing Attributed Network Embedding via Similarity Measure
نویسندگان
چکیده
منابع مشابه
Attributed Social Network Embedding
Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship n...
متن کاملAccelerated Attributed Network Embedding
Network embedding is to learn low-dimensional vector representations for nodes in a network. It has shown to be effective in a variety of tasks such as node classification and link prediction. While embedding algorithms on pure networks have been intensively studied, in many real-world applications, nodes are often accompanied with a rich set of attributes or features, aka attributed networks. ...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملEmbedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملOverlapping Communities Detection via Measure Space Embedding
We present a new algorithm for community detection. The algorithm uses random walks to embed the graph in a space of measures, after which a modification of k-means in that space is applied. The algorithm is therefore fast and easily parallelizable. We evaluate the algorithm on standard random graph benchmarks, including some overlapping community benchmarks, and find its performance to be bett...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2953462